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Case-control studies of unrelated subjects are now widely used to study the role of genetic susceptibility and gene-
environment interactions in the etiology of complex diseases. Exploiting an assumption of gene-environment independence,
and treating the distribution of environmental exposures as completely nonparametric, Chatterjee and Carroll [2005]
(Biometrika 92:399–418) recently developed an efficient retrospective maximum-likelihood method for analysis of case-
control studies. In this article, we develop an extension of the retrospective maximum-likelihood approach to studies where
genetic information may be missing on some study subjects. In particular, special emphasis is given to haplotype-based
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and an appropriate expectation-maximization (EM) algorithm to derive a relatively simple procedure for parameter
estimation, with or without a rare disease assumption, and possibly incorporating information on the marginal probability
of the disease for the underlying population. We also describe two alternative robust approaches that are less sensitive to the
underlying gene-environment independence and Hardy-Weinberg-equilibrium assumptions. The performance of the
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investigate the interaction between BRCA1/2 mutations and reproductive risk factors in the etiology of ovarian cancer.
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INTRODUCTION

Risks of complex diseases such as cancers are
determined by both genetic and environmental
factors. Advances in human genome research
have thus led to epidemiologic investigations
not only of the effects of genes alone, but also of
their effects in combination with environmental
exposures. The case-control study design, which
has been widely used in classical questionnaire-
based epidemiologic studies, is being increasingly
used to study the role of genes and gene-
environment interactions in the etiology of com-
plex diseases.

The traditional approach for analysis of case-
control studies is prospective logistic regression.
Here the basis of inference is formed by the
likelihood of the disease (D) outcome data condi-
tional on covariate information (X), ignoring the
fact that under the case-control sampling design,
data are observed on X conditional on D.
Andersen [1970] and Prentice and Pyke [1979]
showed that such a prospective approach is
actually equivalent to the retrospective maximum
likelihood analysis that properly accounts for the
case-control sampling design, provided the dis-
tribution of covariates is treated completely non-
parametrically. Roeder et al. [1996] generalized
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these results to show that even in the presence of
covariate missing data and/or measurement error,
the prospective and retrospective maximum-like-
lihood methods for analyzing case-control studies
are equivalent, as long as the underlying model
for the covariate distribution is nonparametric.

In studies of genetic epidemiology, it often may
be reasonable to assume certain parametric or
semiparametric models for the covariate distribu-
tion in the underlying source population. For
example, if G represents one of the three possible
genotypes a subject can have at a particular
biallelic locus, the population frequencies of the
three genotypes could be specified in terms of
the frequency of one of the alleles under the
Hardy-Weinberg equilibrium (HWE) assumption.
Another assumption that is commonly invoked in
practice is that genetic susceptibility and environ-
mental exposures are independently distributed
in the population. The prospective logistic regres-
sion analysis, being the semiparametric maximum
likelihood solution for the problem that allows an
arbitrary covariate distribution, clearly remains a
valid option for analyzing case-control studies in
such a setting. However, retrospective methods
that can exploit these various covariate distribu-
tional assumptions can be more efficient [Epstein
and Satten, 2003; Satten and Epstein, 2004;
Chatterjee and Carroll, 2005].

Chatterjee and Carroll [2005] developed a retro-
spective maximum-likelihood approach for ana-
lysis of case-control studies exploiting the gene-
environment independence and possibly the
HWE assumption. In this article, we extend this
approach for dealing with missing data on genetic
risk factors (G). Missing data on genetic factors
could arise due to incomplete genotyping infor-
mation. Moreover, in haplotype-based studies,
where the effect of a gene is studied in terms of
‘‘haplotypes’’ (the combination of alleles at multi-
ple loci along individual chromosomes), missing
data arise due to the intrinsic ‘‘phase ambiguity’’
of locus-specific genotype data. For example, if
A/a and B/b denote the major/minor alleles in
two biallelic loci, then subjects with genotypes
(Aa) and (Bb) at the first and the second locus,
respectively, are considered ‘‘phase ambiguous:’’
their genotypes could arise from either haplotype-
pair (A�B, a�b) or haplotype-pair (A�b, a�B).

As haplotype-based association studies are
becoming increasingly popular, a number of
researchers have developed methods for logistic
regression analysis of case-control studies in the
presence of phase ambiguity. Zhao et al. [2003]

described an estimating-equation approach where
the logistic regression parameters are estimated
based on score equations derived from a prospec-
tive likelihood of the disease outcome data, given
covariates. The estimates of haplotype frequen-
cies, which are required for evaluation of the
prospective score equations, were proposed to be
estimated using an expectation-maximization
(EM) algorithm [Excoffier and Slatkin, 1995]
applied to the genotype data of the controls. Lake
et al. [2003] described a similar prospective
approach, except that they proposed estimating
haplotype frequencies jointly with regression
parameters from the prospective likelihood itself.
Incorporation of environmental factors is straight-
forward in these approaches under the assump-
tion of gene-environment independence.

Epstein and Satten [2003] described an alter-
native approach for haplotype-based analysis of
case-control studies that jointly estimates the
regression parameters and haplotype frequencies
by maximizing the proper retrospective likelihood
of data under the case-control sampling design.
The authors observed that the retrospective like-
lihood approach yielded more efficient estimates
of regression parameters than the previously
proposed prospective methods, a consequence of
the fact that the retrospective approach fully
exploited the HWE assumption for the underlying
population. Incorporation of environmental fac-
tors, however, is complicated in this approach,
because the retrospective likelihood involves
potentially high-dimensional nuisance parameters
that specify the distribution of the environmental
factors in the underlying population. Stram et al.
[2003] described yet another approach based on
the joint likelihood of disease and genotype data,
after accounting for the ascertainment scheme that
cases and controls are selected with differential
probabilities from the underlying population. We
will show later that an extension of this ascertain-
ment-corrected joint-likelihood method, which
can incorporate environmental covariates, is
equivalent to the retrospective-maximum like-
lihood method we propose in this article.

In this article, we extend the profile likelihood
approach of Chatterjee and Carroll [2005] to
develop a relatively simple algorithm for obtain-
ing the efficient retrospective maximum-likeli-
hood estimator for case-control studies that can
incorporate both genetic and environmental fac-
tors and can account for the presence of missing
data in the genetic factors. We first describe the
key results for derivation of the profile likelihood

Haplotypes and Case-Control Studies 109



and related asymptotic theory in a general
missing-data setting. We then describe a repre-
sentation of the profile likelihood that links the
retrospective maximum-likelihood procedure to
the ascertainment-corrected joint-likelihood ap-
proach of Stram et al. [2003]. Then we describe a
computational algorithm for implementation of
the profile likelihood method in the context of
haplotype-based gene-environment interaction
studies. Further simplification of the proposed
methodologies under the rare disease assumption
is also described.

Afterwards, we describe an extension of the
methods to account for possible correlation
between genetic and environmental factors that
may arise due to their dependence on other
common factors, such as ethnicity. We next
describe a modified prospective estimating equa-
tion approach that is fairly robust to violation
of gene-environment independence and HWE
assumptions. We discuss how this latter approach
contrasts with some of the recently proposed
‘‘prospective’’ methods that could be inconsistent
under the case-control design, even if the true
haplotype frequencies were known and the
model assumptions were valid. We then study
the performance of the proposed estimators,
using simulated data in the context of gene-
environment interaction studies involving haplo-
types. Finally, we illustrate the application of the
proposed method based on a case-control study of
ovarian cancer aiming to ascertain the interaction
of reproductive risk factors and BRCA1/2
mutation.

METHODS: THE GENERAL
SETTING

NOTATIONS AND MODEL ASSUMPTIONS

Let D be the binary indicator of the presence,
D ¼ 1, or the absence, D ¼ 0, of a disease. Suppose
the prospective risk model for the disease given
a subject’s genetic covariate of interest, H, and
environmental risk factors, X, is given by the
logistic regression model prðD ¼ 1jH; XÞ ¼
L b0 þmðH; X; b1Þf g, where LðuÞ ¼ f1þ
expð�uÞg�1 is the logistic distribution function,
and mð�Þ is a known but arbitrary function. We
assume H and X are independently distributed in
the underlying population, and their joint dis-
tribution is given by the product form
VðH; XÞ ¼ QðHÞFðXÞ, where Q and F are the
marginal distribution functions of H and X,

respectively. We assume H is discrete with prðH ¼
hjÞ ¼ qðhj; yÞ; where qð�Þ is a known function and y
is a vector of parameters. The environmental
covariates X can be of arbitrary type, possibly
including both continuous and discrete compo-
nents. The corresponding distribution F(x) is left
completely unspecified.

Suppose that the true genetic covariate of
interest, H, may not be always directly observed.
Let G denote all the genetic information for a
subject that is directly observed. We assume that G
is independent of ðD; XÞ given H, i.e., G does not
contain any additional information on D and X
given H. Let D be a variable whose values indicate
what sort of genetic information is measured in G.
For example, in a haplotype-based study, we
could have

D ¼
1 if no genetic information is measured;
2 if unphased genotypes are measured;
3 if phased haplotypes are measured:

8<
:

Suppose that N0 controls and N1 cases are
sampled from the conditional distributions pr(D,
G, X|D¼1) and pr(D, G, X|D¼0), respectively,
and let ðGi; XiÞN0þN1

i¼1 denote the corresponding
covariate data of the N0 þN1 study subjects. We
assume that pr(D|D, X, H)¼pr(D|D, X, G), i.e., the
type of genetic information measured does not
depend on the individual’s true genetic covariate
(H), given disease status (D), environmental
covariates (X), and the measured genetic informa-
tion (G).

Define H to be the set of all possible values
of H, and HG ¼ fhj : hj is consistent with Gg to be
the set of all possible values of H that are
consistent with the observable genetic information
G. Then,

prðDjX; GÞ ¼
X
h2HG

prðDjX; H ¼ h; GÞprðH ¼ hjX; GÞ

¼
X
h2HG

prðDjX; H ¼ hÞprðH ¼ hjGÞ

¼
X
h2HG

prðDjX; H ¼ hÞqðh; yÞP
h02HG

qðh0; yÞ :

The log-likelihood of the data under the case-
control sampling scheme assuming the above
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model is given by

L ¼
XN0þN1

i¼1

logfprðGi; XijDiÞg

¼
XN0þN1

i¼1

logfprðDijGi; XiÞprðGiÞprðXiÞ=prðDiÞg

ð1Þ
where

prðDiÞ ¼
Z
x

X
h2H

prðDijX ¼ x; H ¼ hÞ

�prðH ¼ hÞdFðxÞ:

IDENTIFIABILITY

In a nonparametric setting, where no assump-
tion is made about the form of the covariate
distribution Vðh; xÞ, it is well-known that neither
Vð�Þ nor the intercept parameter b0 is identifiable
from case-control data [Prentice and Pyke, 1979].
In contrast, under the assumption of gene-envir-
onment independence, Chatterjee and Carroll
[2005] noted that except for some boundary
situations, the intercept parameter b0 and the
covariate distribution Vð�Þ are identifiable from
the retrospective case-control likelihood. In gen-
eral, the identifiability of b0 is intrinsically related
to the class of Vð�Þ that is under consideration.

In the presence of missing data on H, the
identifiability of the parameter estimates also
depends on the nature of missing data and the
form of the functions mðH; X; b1Þ and qðH; yÞ. In
haplotype-based studies, for example, where H
reflects the pair of haplotypes (diplotypes) a
subject carries in two homologous chromosomes,
certain diplotypes may never be directly obser-

vable from the unphased genotype data. In such a
situation, identifiability of parameter estimates
requires specifying the distribution qðH; yÞ, using
the HWE assumption (see Haplotype-Based Gene-
Environment Studies, below) and restricting the
model mðH; E; b1Þ so that it does not involve
interactions between pairs of haplotypes which
are never directly observed together. For subse-
quent calculations, we will assume that depend-
ing on the missing data structure of H, the models
qðH; yÞ and mðH; X; b1Þ are chosen in such a way

that all of the parameters b0, b1, and y and the
nonparametric distribution function F(x) are iden-
tifiable from prospective studies. In what follows,
we state easily verifiable conditions for identifia-
bility of parameters of a prospective model from
retrospective studies.

We will assume X to be discrete, with K possible
values. Although the results we state below can be
expected to hold for a continuous X, a rigorous
proof would require a more sophisticated argu-
ment. Let qðGÞ and fðXÞ denote the marginal
probability mass functions for G and X in the
underlying population. Further define

fðG; XÞ ¼ log
prðD ¼ 1jG; XÞprðD ¼ 0jG0; X0Þ
prðD ¼ 0jG; XÞprðD ¼ 1jG0; X0Þ

to be the log odds-ratio of the disease associated
with the joint exposure ðG; XÞ in reference to a
chosen baseline value ðG0; X0Þ, and let
a ¼ logitfprðD ¼ 1jG0; X0Þg, so that a is the
corresponding baseline odds of the disease. With
a slight abuse of notation, let f, q, and f denote the
vectors that contain the values of fðXÞ, qðGÞ, and
fðG; XÞ, respectively, for distinct values of X and
G. We note that the parameter vector
W ¼ ða; fT; qT; fTÞT completely characterizes
the joint distribution prðD; G; XÞ. It is clear
that f is identifiable from retrospective studies,
because prospective and retrospective odds-
ratios are equivalent. In the following Lemma,
we state conditions under which the other
components of W are identifiable from retrospec-
tive studies.

Lemma 1. Define a� ¼ aþ log½fN1prWðD ¼ 0Þg=
fN0prWðD ¼ 1Þg�. Let B0 � B be the subspace for the
parameter vector W that satisfies the constraint

for some probability mass functions q�ðGÞ and f�ðXÞ.
Then, for all W =2B0,

prWðX ¼ x; G ¼ g D ¼ dj Þ ¼ prW�ðE ¼ e;

G ¼ g D ¼ dj Þ

if and only if W ¼ W�. Moreover, if the models
qðH; yÞ and mðH; X; b1Þ are chosen in such a way
that g ¼ ðb0; b1; yÞ is uniquely identifiable from the
prospective likelihood prðD; G; XÞ, then for all

V�ðG; XÞ � ½1þ expfa� þ fðG; XÞg�½1þ expfaþ fðG; XÞg��1qðGÞfðXÞP
g; x
½1þ expfa� þ fðg; xÞg�½1þ expfaþ fðg; xÞg��1qðgÞfðxÞ

¼ q�ðGÞf�ðxÞ ð2Þ
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g =2G0 � g : WðgÞ 2 y0f g,

prgðX ¼ x; G ¼ g D ¼ dj Þ ¼ prg� ðE ¼ e;

G ¼ g D ¼ dj Þ

if and only if g ¼ g�.

Lemma 1 first ensures the conditions under
which the joint distribution prðD; G; XÞ of the
observable variables ðD; G; XÞ can be nonparame-
trically identified from retrospective studies.
Further, it states the condition under which the
parameters b0, b1, and y, that characterize the
joint distribution prðD; H; XÞ involving the po-
tentially unobservable variable H, can be identi-
fied from retrospective studies. The proof of our
Lemma 1 follows from the Lemma 1 of Roeder et
al. [1996], which states that V�ðG; XÞ is the only
distribution of ðG; XÞ that can yield the same
value of retrospective likelihood as the true
distribution VðG; XÞ ¼ qðGÞfðXÞ. Now, for W =2B0,
V�ðG; XÞ lies outside the model space under
the consideration that assumes G and X are
independent. Thus, for W =2B0, the retrospective-
likelihood uniquely identifies the joint distribu-
tion VðG; XÞ, which together with the odds-ratio
parameters fðG; XÞ further identifies the intercept
parameter a.

Consider the hypothetical population P� that
could be obtained by sampling each subject from
the original population P according to a Bernoulli
sampling, with the selection probability for cases
and controls being proportional to N1=prðD ¼ 1Þ
and N0=prðD ¼ 1Þ. A case-control sample from
population P can be viewed as a random sample
from population P�. Moreover, with some algebra,
it can be seen that V�ðG; XÞ represents the
distribution of ðG; XÞ for the selected population
P�. Thus the constraint (2) can be checked in the
data by testing for the independence of G and X in
the combined case-control sample. The boundary
condition (2) implies that if G and X are assumed
to be independently distributed in the underlying
population, then the departure of the distribution
of ðG; XÞ in the case-control sample from inde-
pendence is informative for the estimation of
VðG; XÞ and a. Similarly, if certain parametric
models, such as HWE, are assumed to hold for
qðGÞ in the underlying population, then the
departure of the distribution of G in the case-
control sample from the assumed parametric
models is informative for the estimation of qðGÞ
and a.

ESTIMATION

Now we consider maximization of L with
respect to the underlying parameters of the model,
b0, b1, and y, and the nonparametric distribution
function FðxÞ. We consider the restricted nonpara-
metric maximum likelihood estimator of F
that allows positive masses only within the set
X ¼ x1; . . . ; xKf g that represents the unique
values of X that are observed in the case-control
sample of N ¼ N0 þN1 study subjects. Thus, for
obtaining the maximum likelihood estimator, it is
sufficient to consider the class of discrete F that
has support points within the set X . Any F in this
class can be parameterized with respect to the
probability masses d1; . . . ; dKf g that it assigns to
the points x1; . . . ; xKf g.

Since the dimension of d could easily becomes
very large when X consists of multiple covariates,
possibly including continuous ones, direct max-
imization of the log-likelihood with respect to
ðb0; b1; y; dÞ may be complex or even infeasible.
Following Chatterjee and Carroll [2005] we con-
sider deriving the profile likelihood for the lower-
dimensional parameters g ¼ ðb0; b1; yÞ by max-
imizing the likelihood with respect to d for fixed
values of g. The result in the following Lemma
shows that the profile likelihood Lfg; d̂ðgÞg can be
obtained in a closed form up to only one
additional parameter k, and thus numeric max-
imization of the likelihood Lðg; dÞ with respect to
the potentially high-dimensional nuisance para-
meter d can be avoided.

Lemma 2. Let k ¼ b0 þ log½fN1prðD ¼ 0Þg=
fN0prðD ¼ 1Þg�, O ¼ ðg; kÞ, and SðD; X; H; OÞ ¼
qðH; yÞexp½DfkþmðX; H; b1Þg�=½1þ expfb0 þmðX;
mðX;H; b1Þg�. The profile log likelihood Lfg; d̂ðgÞg
can be computed as L�fg; k̂ðgÞg where

L�ðg; kÞ ¼
XN

i¼1

log
X

hj2HGi

SðDi; Xi; hj; OÞ

8<
:

9=
;

2
4

� log
X1

d¼0

X
hj2H

Sðd; Xi; hj; OÞ

8<
:

9=
;
3
5 ð3Þ

and k̂ðgÞ is defined by the solution of the equation
qL�ðk; gÞ=qk ¼ 0 for fixed g.

The proof of the Lemma is given in the
Appendix.

In the above approach, for rare diseases, the
estimate of the parameter b0 itself can be expected
to be imprecise because of the intrinsic nonin-
formativeness of the retrospective likelihood.
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Much more precise estimation of b0 is possible
when the marginal probability of the disease,
prðD ¼ 1Þ ¼ p1, for the underlying population
is known, which is often the case for case-
control studies conducted within a well-
defined population or an established cohort. In
this case, we observe that k and b0 are uniquely
determined from each other, based on the
formula

k ¼ b0 þ log
N1

N0
2log

p1

1� p1
: ð4Þ

Thus the profile-likelihood can be defined in
terms of the reduced set of parameters
O ¼ ðb0; b1; yÞ. Hereafter, we will use the generic
notation O so that our results are valid for both the
cases of prðD ¼ 1Þ being known and prðD ¼ 1Þ
being unknown, with the convention that O ¼
ðb0; b1; yÞ in the former case and O ¼ ðb0; k; b1; yÞ
in the latter case.

The score function is given by qL�ðOÞ=qO ¼PN
i¼1 CðDi; Xi; Gi; OÞ where

CðDi; Xi; Gi; OÞ ¼
P

h2HGi
SOðDi; Xi; h; OÞP

h2HGi
SðDi; Xi; h; OÞ

�
P

d¼0;1

P
hj2H SOðd; Xi; hj; OÞP

d¼0;1

P
hj2H Sðd; Xi; hj; OÞ

and SOðDi; Xi; h; OÞ ¼ qSOðDi; Xi; h; OÞ=qO. Fur-
ther define I ¼ �N�1Efq2L�ðOÞ=qOqOTg, with the
expectation being taken under the case-control
sampling design. Let

L ¼
X1

d¼0

ðNd=NÞEfCðD; D; X; G; OÞjD ¼ dg

� ½EfCðD; D; X; G; OÞjD ¼ dg�T:
In the following Lemma, we state the main

asymptotic result, which in turn is used to obtain
estimates of the asymptotic variance-covariance
matrix of the parameter estimates.

Theorem 1. Under suitable regularity conditions, the
following results hold:

(i) The estimating equations qL�=qO �PN
i¼1 CðDi; Di; Xi; Gi; OÞ ¼ 0 have a unique,

consistent sequence of solutions, Ô
N

n o
N�1

;

(ii) Moreover, N1=2 Ô
N � O0

� �
! Normalð0; SÞ in

distribution, with S ¼ I�1 � I�1LI�1.

HAPLOTYPE-BASED GENE-
ENVIRONMENT STUDIES

BACKGROUND, NOTATION, AND MODEL

For haplotype-based studies, the underlying
genetic factor (H) of interest for a subject is
defined by ‘‘diplotypes,’’ i.e., the two haplotypes
the individual carries in his/her pair of homo-
logous chromosomes, where each ‘‘haplotype’’ is
the combination of alleles at the loci of interest
along an individual chromosome within the
genomic region of interest. We denote the diplo-
type data for a subject by Hd ¼ ðH1;H2Þ, where H1

and H2 denote the constituent haplotypes. The
diplotype data, however, are not directly obser-
vable using standard polymerase chain reaction
(PCR) methods. Instead, for each subject, the
multilocus genotype data G are observed, which
contain information on the pair of alleles the
subject carries on the pair of homologous chromo-
somes at each locus, but does not provide the
‘‘phase information,’’ i.e., which combination of
alleles appears along each of the individual
chromosomes. Thus, the same genotype data G
could be consistent with multiple diplotypes. We
will denote Hd

G to be the set of all possible
diplotypes that are consistent with the genotype
data G. We observe that for subjects who carry
two copies of the same allele (homozygous
genotype) at all loci or all but one locus, the
diplotype information is uniquely identifiable. It
is for subjects who are heterozygous at two or
more loci that the phase remains ambiguous.

Given the diplotype data Hd and environmental
covariate X, we assume that the risk of the disease
is given by the logistic regression model

logitfprðD ¼ 1jHd; XÞg ¼ b0 þmðHd; X; b1Þ:
Often, one imposes structural assumptions on the
risk associated with Hd by modeling its effect
through the constituent haplotypes according to a
dominant, additive, or recessive model [Wallen-
stein et al., 1998]. Such modeling may be necessary
due to identifiability considerations [Epstein and
Satten, 2003]. Such modeling may also be desir-
able when the effects of the haplotypes them-
selves are of direct scientific interest. For example,
a logistic regression model which assumes an
additive effect for each copy of a haplotype
(additive model) corresponds to

m Hd ¼ ðh1; h2Þ; X; b1

� �
¼ bXX þ bh1

þ bh2

þ bh1:XX þ bh2:XX
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where bX is the main effect of X, bhi
is

the main effects of haplotypes hi, i ¼ 1; 2 and
bhi:X is the interaction effect of X with haplotype
hi, i ¼ 1; 2.

We assume that Hd is independent of X in
the population. Moreover, we assume that
the distribution of diplotypes is specified by the
HWE

pry Hd ¼ ðHi; HjÞ
� �

¼ y2
i if Hi ¼ Hj

¼ 2yiyj if Hi 6¼ Hj

ð5Þ

where yi denotes the frequency for haplotype Hi.
In the following, we present an alternative

representation of Ln that links the retrospective-
maximum-likelihood approach to an extension of
the approach of Stram et al. [2003], to account for
environmental covariates. For algebraic conveni-
ence, we now introduce some further notations.
Define

rOðHd; XÞ ¼ 1þ expfkþmðHd; X; b1Þg
1þ expfb0 þmðHd; X; b1Þg

:

Consider a sampling scenario where each
subject from the underlying population is
selected into the case-control study using a
Bernoulli sampling scheme, where the selection
probability for a subject given his/her disease
status D ¼ d is proportional to md ¼ Nd=pr
ðD ¼ dÞ. Let R ¼ 1 denote the indicator of
whether a subject is selected in the case-control
sample under the above Bernoulli sampling
scheme. We observe the following probability
equalities

SðD; Hd; X; OÞ ¼ prðDjHd; X; R ¼ 1Þ
� qðHd; yÞrOðHd; XÞ;

ð6Þ

prðD ¼ 1jHd; X; R ¼ 1Þ

¼ ½1þ expf�k�mðHd; X; b1Þg��1; ð7Þ

prðHdjD; G; X; R ¼ 1Þ

¼ prðDjHd; X; R ¼ 1ÞprðHdjX; R ¼ 1ÞP
hd2HG

prðDjHd ¼ hd; X; R ¼ 1ÞprðHd ¼ hdjX; R ¼ 1Þ ;

ð8Þ
and

prðHdjX; R ¼ 1Þ ¼ qðHd; yÞrOðHd; XÞP
hd qðhd; yÞrOðhd; XÞ : ð9Þ

With some algebra, one can now show that the
log-profile-likelihood given in Lemma 1 can be

expressed in the form

L� ¼
XN

i¼1

log½
X

hd2Hd
Gi

prðDijHd
i ¼ hd; Xi; Ri ¼ 1Þ

�prðHd
i ¼ hdjXi; Ri ¼ 1Þ�

¼
XN

i¼1

log½
X

hd2Hd
Gi

prðDi; Hd
i ¼ hdjXi; Ri ¼ 1Þ�

¼
XN

i¼1

logfprðDi; GijXi; Ri ¼ 1Þg:

When no environmental factors are involved,
Stram et al. [2003] proposed analysis of haplo-
type-based case-control studies using an ‘‘ascer-
tainment-corrected joint-likelihood’’ of the formQ

i prðDi; GijRi ¼ 1Þ. The representation of the
profile likelihood Ln given in (10) suggests that
when FðxÞ is treated completely nonparametri-
cally, the efficient retrospective maximum-like-
lihood estimate of the haplotype frequency and
the regression parameters can be obtained by
conditioning on X in the approach of Stram et al.
[2003].

Next, we develop an algorithm for estimating
O ¼ ðk; b1; yÞ using Ln, assuming prðD ¼ 1Þ is
known. Then we describe a modification of the
methods required when prðD ¼ 1Þ is unknown.

ESTIMATION OF HAPLOTYPE FREQUENCIES

Here, we describe an estimation method for the
haplotype-frequency parameters (y) for fixed
ðk; bÞ. Let NkðHdÞ be the number of copies of
haplotype Hk contained in the diplotype Hd. Note
that NkðHdÞ could be 0, 1, or 2. The value of y that
maximizes Ln with the constraints

PK
k¼1yk ¼ 1 will

satisfy the equation

q
qyk

L� þ l
X

k

yk

( )
¼ 0:

The resulting estimating equation can be shown
to be

0 ¼
XN

i¼1

EO½
qlogfqðHd; yÞg

qyk
jDi; Gi; Xi; R ¼ 1�

�
XN

i¼1

EO½
qlogfqðHd; yÞg

qyk
jXi; R ¼ 1� þ l

ð11Þ

where qlogfpryðHdÞg=qyk ¼ NkðHdÞ=yk, and the
expectations in the first and second terms are
taken with respect to the distribution prðHdjD;
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G; X; R ¼ 1Þ (see formula 8) and prðHdjX; R ¼ 1Þ
(see formula 9), respectively. Now multiplying
the estimating equation (11) by yk, summing it

over k, and using the fact that
PK

k¼1 NkðHdÞ ¼ 2,
we can show that l ¼ 2N � 2N ¼ 0. Thus, we
have shown that the estimating function for y is
given by

XN

i¼1

EO NkðHdÞ
��Di; Gi; Xi; R ¼ 1

� �

�
XN

i¼1

EO NkðHdÞ
��Xi; R ¼ 1

� �
: ð12Þ

Now we notice that

XN

i¼1

EO NkðHdÞ
��Xi; R ¼ 1

� �

¼ yk

XN

i¼1

P
h
0
k
2yk 0 rOfHd ¼ ðhk; h

0

kÞ; XigP
hd pryðHd ¼ hdÞrOðhd; XiÞ

:

This representation suggests the following itera-
tive approach for solving (12) in terms of y:

yðsþ1Þ
k ¼ N

ðsÞ
k

XN

i¼1

P
h
0
k
2yðsÞ

k 0
rOfHd ¼ ðhk; h

0

kÞ; XigP
hd pryðsÞ ðHd ¼ hdÞrOðhd; XiÞ

8<
:

9=
;
�1

ð13Þ

where N
ðsÞ
k ¼

PN
i¼1 EO¼ðk;b;yðsÞÞ NkðHdÞ

��Di; Gi; Xi;
�

R ¼ 1g is the expected count for the kth haplotype
under the current parameter estimates. We
observe that by definition, yðsÞk 40. Further, in
each iteration, we will normalize yðsþ1Þ

k ¼ yðsþ1Þ
k =PK

k0¼1 y
ðsþ1Þ
k . Thus, we note that the estimate of

haplotype-frequencies using formula (13) is given
by the expected haplotype-count as a ratio of an
‘‘effective sample-size’’ formula.

ESTIMATION OF b1 AND j

Define b� ¼ ðk; b1Þ. The estimating equation
corresponding to qL�=qb� ¼ 0 can be written in
the form ðB1Þ þ ðB2Þ þ ðB3Þ ¼ 0, where

ðB1Þ ¼
X

i

EO
q
qb�

logfprb�ðDijHd; Xi; R ¼ 1Þg
�

jDi; Gi; Xi; Ri ¼ 1

�
;

ðB2Þ ¼
X

i

EO
q
qb�

logfrOðHd; XiÞgjDi; Gi; Xi; R ¼ 1

� �
;

ðB3Þ ¼ �
X

i

EO
q
qb�

logfrOðHd; XiÞgjXi; Ri ¼ 1

� �
:

Let Vb�ðOÞ ¼ ðB2Þ þ ðB3Þ. We propose to estimate
b� by iteratively solving

XN

i¼1

EOðt�1Þ
q
qb�

logfprb� ðDijH;Xi;R ¼ 1Þg
�

jDi;Gi;Xi;R ¼ 1

�
¼ �Vb�ðOðt�1ÞÞ:

ð14Þ

We observe that the estimating equations given in
(14) are similar to the corresponding estimating
equations for b0 and b1 in a logistic regression
model in the presence of missing data, except that
we are equating them to a nonzero term. Because
of the similarity with the parameter estimation in
the standard logistic regression model, we can
get a fairly stable algorithm for solving these
equations.

Unknown prðD ¼ 1Þ.

We observe that in the calculations given above,
the value of prðD ¼ 1Þ is only needed to get an
estimate b0 from the estimate of k. Moreover, the
parameter b0 enters into computations only
through the function rOðH; XÞ. If we assume a
rare disease, then we have

rOðH; XÞ 	 1þ exp kþmðH; X; b1Þf g: ð15Þ

Thus, if one assumes a rare disease, b0 need not
be estimated, and hence prðD ¼ 1Þ need not be
known. Under this rare disease approximation,
the proposed retrospective maximum-likelihood
method reduces to that of Epstein and Satten
[2003] in the absence of environmental covariates.
If one is not willing to make the rare disease
assumption, we propose to estimate y, k, and b1 by
maximizing Ln for fixed values of b0 and then do a
one-dimensional grid-search to find the estimate
of b0 that maximizes the profile likelihood
L�ðb0; b̂

�ðb0Þ; ŷðb0ÞÞ. We found that the grid-
search method performs very well for unbiased
estimation of the odds-ratio parameters (b1) of
interest. The estimates of the intercept parameter
b0, however, are typically imprecise. Gains in
precision are possible if one places reasonable
bounds on prðD ¼ 1Þ.

POPULATION STRATIFICATION

Although in many situations genetic sus-
ceptibility and environmental exposures are un-
likely to be causally related at an individual level,
these factors may be correlated at a population
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level due to their dependence on other factors.
A classic example is ‘‘population stratification’’
due to ethnicity. Allele frequencies for many genes
vary widely across different races. Moreover,
environmental covariates such as lifestyle or
dietary factors also often have different distribu-
tions for people of different races. Thus, although
genetic and environmental factors may be inde-
pendently distributed within an ethnic group,
there could be a spurious correlation bet-
ween these factors when ethnicity is ignored.
Here, we will briefly describe how to generalize
our methods to handle such ‘‘population stratifi-
cation.’’

We assume there is a set of cofactors W so that
gene-environment independence and HWE hold,
conditional on W. We consider a polytomous
logistic regression model for specifying the hap-
lotype-frequencies, given W, as

log prðH ¼ hkjWÞ=prðH ¼ h0jWÞ
� �
¼ log ykðWÞ=y0ðWÞf g ¼ gk0 þ gT

k1W

for k ¼ 1; . . . ; K, where h0 is a reference haplo-
type, typically chosen to be the most common
haplotype. We further assume HWE conditional
on W, i.e.,

prg Hd ¼ ðHi; HjÞjW
� �

¼ yiðWÞf g2 if Hi ¼ Hj

¼2yiðWÞyjðWÞ if Hi 6¼ Hj:

We also allow W to be potential risk factors for the
disease by simply extending the disease-risk
model to be

logitfprðD ¼ 1jHd; X; WÞg

¼ b0 þmðHd; X; W ; b1Þ:
Define

rOðHd; X; WÞ ¼ 1þ expfkþmðHd; X; W ; b1Þg
1þ expfb0 þmðHd; X; W ; b1Þg

:

Following previous arguments, the estima-
ting equation for gk that corresponds to maxi-
mization of the profile likelihood L� ¼

P
i

P
Hd2HGi

logfprðDi; HdjXi; Wi; R ¼ 1Þg can be shown
to be

0 ¼
XN

i¼1

EO
qlogfprgðHdjWÞg

qgk

�����Di; Gi; Xi; Wi; R ¼ 1

" #

�
XN

i¼1

EO
qlogfprgðHdÞg

qgk

�����Xi; Wi; R ¼ 1

" #

ð16Þ

where

qlogfprgðHjWÞg
qgk

¼W NkðHÞ � 2ykðWÞf g: ð17Þ

One can get a fairly stable Newton-Raphson or
related algorithm for solving (16) by exploiting the
generalized linear model (GLM) form of (17).
Finally, the updating procedures for k and b1

remain the same as before, except that throughout,
we condition on W.

ALTERNATIVE ROBUST ESTIMATION OF b

Although exploitation of the gene-environment
independence and the HWE assumptions can lead
to major efficiency gains for analysis of case-
control studies, we recommend cautious use of
these assumptions, because violation of them can
lead to major bias in parameter estimation [Albert
et al., 2001; Satten and Epstein, 2004; Chatterjee
and Carroll, 2005]. The gene-environment inde-
pendence assumption, for example, is likely to be
satisfied in a wide range of studies involving
external environmental agents, exposure to which
is not directly controlled by an individual’s own
behavior. When an exposure depends on a
subject’s individual behavior, on the other hand,
the independence assumption could be violated
due to direct or indirect association. Family
history of a disease, for example, which is
associated with genetic risk factors, may influence
a subject to change his/her behavior regarding
established environmental risk factors, such as
smoking for lung cancer. In estimation of b1 and k,
we proposed a possible remedy for accounting for
such indirect association between G and E due to
their dependence on other common factors S.
There could also be direct associations. Genetic
polymorphisms in the smoking metabolism path-
way, for example, may not only modify a subject’s
risk from smoking, but may also influence a
subject’s degree of addiction to smoking.

When violation of HWE and/or the gene-
environment independence assumption seems
plausible, it is important to consider alternative
methods for analysis of case-control studies that
are less sensitive to these assumptions. In the
absence of missing data, it is well-known that
the standard prospective logistic regression ana-
lysis is such an option, because it does not rely on
any assumption on covariate distribution. In the
presence of missing data, a prospective likelihood-
based method that treats the distribution of
cofactors as completely nonparametric will also
be such a robust option [e.g., Roeder et al., 1996].
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For haplotype-based studies, however, a complete
nonparametric treatment of the covariate distribu-
tion may not be possible because of a lack of
parameter identifiability. Nevertheless, when no
environmental factors are involved, Satten and
Epstein [2004] showed that methods that estimate
the regression parameters from the prospective
likelihood of data are less sensitive to the violation
of the HWE assumption than those based on the
true retrospective likelihood. Below, we point out
a problem for the use of the prospective estimat-
ing equation for analysis of case-control studies,
and propose an appropriate remedy.

For fixed values of the haplotype-frequency
parameter y, the score equations for the regression
parameters b� ¼ ðk; b1Þ, corresponding to the
prospective likelihood of the data, are given by

We argue in the Appendix that this ‘‘purely
prospective’’ score equation (18) is biased under
the case-control sampling design due to the
underlying covariate distributional assumptions.
In other words, even if the true haplotype-
frequencies were known and the underlying
HWE and gene-environment independence as-
sumptions were valid, the estimator of the
regression parameter b1 based on solving the
score equation (18) is not consistent. However, we
show that the following simple modification of
the prospective score equation is unbiased:

The only structural difference between the two
sets of score equations is that (19) is obtained from
(18) by replacing qðhd; yÞ with rOðhd; XiÞqðhd; yÞ.
The unbiasedness of the modified prospective-
score equations under the case-control sampling
design is shown in the Appendix. We also show
that with an appropriate rare disease approxima-
tion, the proposed method is equivalent to the
estimating equation approach proposed by Zhao
et al. [2003]. However, we note that the proof of
the asymptotic unbiasedness of the estimating
equation approach that is given in Zhao et al.
[2003] assumes random sampling of subjects, and
does not properly account for the case-control

sampling design. Thus our derivation justifies the
validity of the procedure of Zhao et al. [2003]
under the case-control sampling design. More-
over, it shows how one can avoid the rare disease
approximation by using the exact score equation
(19) itself.

We observe that evaluation of the score function
(19) requires knowing y and b0. Similar to Satten
and Epstein [2004], we propose estimating y for a
fixed value of bn and b0 by maximization of the
retrospective likelihood, the algorithm for which
we described in Estimation of Haplotype Fre-
quencies, above. As before, we observe that if
prðD ¼ 1Þ is known, then b0 could be evaluated as
a function of k using the relationship (4). If
prðD ¼ 1Þ is unknown, one can use the rare
disease approximation given in equation (15), so

that evaluation of (19) does not require knowing
b0. Alternatively, one can estimate y and b for
fixed values of b0 following the above procedures,
and then do a one-dimensional grid-search to
estimate b0 as the maximizer of the profile like-
lihood L�fb0; b̂

�ðb0Þ; ŷðb0Þg. Finally, we observe
that the functional form of the right-hand side of
the score equation (19) is equivalent to that of B1,
the first of the three terms of the score equations
corresponding to the retrospective likelihood that
are given in Estimation of b1 and k, above. Thus,
the proposed prospective estimation method can

be implemented with minimal modification of the
algorithm for the retrospective method, and vice
versa. A sandwich variance estimator, which
properly accounts for the case-control design,
can also be easily obtained based on the estimat-
ing equation theory. A general formula for the
variance estimator is given in the Appendix.

SIMULATION STUDIES

H AND X ARE INDEPENDENT

In the first set of simulation studies, we
examined the performance of the proposed retro-

0 ¼
XN

i¼1

P
hd2Hd

Gi

q
qb�logfprb� ðDijhd; XiÞgprb�ðDijhd; XiÞrOðhd; XiÞqðhd; yÞP

hd2Hd
Gi

prb� ðDijhd; XiÞrOðhd; XiÞqðhd; yÞ : ð19Þ

0 ¼
XN

i¼1

P
hd2Hd

Gi

q
qb�logfprb� ðDijhd; XiÞgprb� ðDijhd; XiÞqðhd; yÞP

hd2Hd
Gi

prb� ðDijhd; XiÞqðhd; yÞ : ð18Þ
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spective semiparametric maximum-likelihood
method in haplotype-based studies of gene-
environment interactions. We simulated data in a
setting similar to that of Lake et al. [2003]. We
considered the first five of the six single nucleo-
tide polymorphisms (SNP) listed in Table 1 of
Lake et al. [2003]. The corresponding haplotypes
and their frequencies are listed in our Table I.
Given these haplotype frequencies, we generated
diplotypes for each subject under the assumption
of Hardy-Weinberg equilibrium. Additionally, we
generated an environmental covariate for each
subject independent of the subject’s diplotype
status, from a log normal distribution, where the
underlying normal distribution has mean and
variance 0 and 1, respectively. The environmental
covariate was truncated above at 10. Given the
diplotype status Hd and environment covariate X,
we generated the binary disease status for each
subject according to the model

logitfprðDjHd; XÞg ¼ b0 þ bX þ bHN3ðHdÞ

þ bHXN3ðHdÞX
where N3ðHdÞ denotes the number of copies of h3

contained in Hd, and ðb0; bX; bH; bHXÞ ¼ ð�3:5;
0:1; 0:15; 0:20Þ. For each replicate of our simula-
tion, we first generated data for a large random
sample of subjects, which was then treated as the
underlying study base for selection of 1,000 cases
and 1,000 controls. For analysis of each datum, we
assume that only the unphased genotype data are
observed. Further, to examine the influence of
missing genotype data, we deleted genotype
information for the fourth and fifth SNP in a
randomly selected subset of subjects. The propor-
tion of subjects who can have missing genotypes
for both SNPs was chosen to be 20%, and that of
subjects who can have missing genotypes only for
one but not the other was chosen to be 10%, and
vice versa.

We analyzed each data set using the retro-
spective maximum-likelihood method, under the
assumption that Hd and X are independent in the
population, with prðD ¼ 1Þ being known and
unknown, the algorithms for which are described
above. In the case of prðD ¼ 1Þ being unknown,
we used the grid-search method for estimation of
b0 that we described earlier. Although we know
that there are eight true haplotypes in the under-
lying population, for analysis of each datum, we
allowed all possible 32 haplotypes to arise, and let
the algorithm estimate the frequencies of each
haplotype separately. For estimation of regression
parameters (b1), we pooled three rare haplotypes
h6, h7, and h8 and all of the artificial haplotypes
which may appear in the given data to have
nonzero, but small, frequencies. The performance
of the proposed method for estimation of the
haplotype frequency (y) and regression para-
meters (b) is shown in Table II. For convenience
of presentation, frequency estimates are shown for
the non-null haplotype h3, which is known to be
associated with the disease, for one null ‘‘com-
mon’’ (f¼ 15%) haplotype, and for one null ‘‘rare’’
(f¼ 5%) haplotype. The estimates of regression
parameters are shown for the non-null haplotype
(h3), for one ‘‘common’’ haplotype (h2), and for the
pooled category of rare haplotypes.

Using the results shown in Table II, we observe
that the proposed method performed very well in
estimating both the regression parameters (b) and
haplotype frequencies (y). The proposed standard
error estimator also performed very well, and the
corresponding 95% confidence intervals had
coverage that was very close to their nominal
values. Estimates of the interaction parameter bHX

for the non-null haplotype h3 were more precise
when prðD ¼ 1Þ was known than when prðD ¼ 1Þ
was unknown.

H ARE X ARE INDEPENDENT, GIVEN S

In the second simulation study, we examined
the robustness of alternative methods in a scenario
where the assumptions of gene-environment
independence and HWE hold only within sub-
populations. We consider a population composed
of two strata, with frequencies 0.40 (S¼1) and 0.60
(S¼2), which differed in their distribution of both
haplotypes and environmental factors. We as-
sumed a simple scenario involving four haplo-
types constructed from two binary SNPs with the
haplotypes fð0; 0Þ; ð0; 1Þ; ð1; 0Þ; ð1; 1Þg having
frequencies ð0:35; 0:30; 0:15; 0:20Þ and ð0:35; 0:20;

TABLE I. Haplotypes and associated frequencies used
to generate case-control data for simulation studies
described in ‘‘H and X are independent’’

Haplotype Frequency

h1¼ (0, 0, 0, 0, 0) 0.25
h2¼ (0, 0, 0, 1, 0) 0.15
h3¼ (0, 1, 1, 0, 1) 0.25
h4¼ (0, 1, 1, 1, 0) 0.10
h5¼ (1, 0, 0, 0, 0) 0.10
h6¼ (1, 0, 0, 1, 0) 0.05
h7¼ (1, 0, 1, 1, 1) 0.05
h8¼ (1, 1, 1, 0, 0) 0.05
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0:30; 0:15Þ in strata 1 and 2, respectively. We chose
the frequencies for the larger stratum (stratum 2)
to correspond to the haplotypes defined by the
third and fourth SNPs listed in Table 1. The values
of R2

h, a popular measure for haplotype-phase
uncertainty [Stram et al., 2003], for the haplotypes
fð0; 0Þ; ð0; 1Þ; ð1; 0Þ; ð1; 1Þg were ð0:88; 0:87; 0:79;
0:83Þ for stratum 1 and ð0:88; 0:83; 0:87; 0:78Þ for
stratum 2. Thus, in this setting, the degree of
phase-uncertainty was modest, but not negligible.

We generated the environmental covariate from
a log normal distribution, with the mean and
variance for the underlying normal distribution at
0.67 and 1 for stratum 1, and 0 and 1 for stratum 2.
Again, we truncated the environmental exposure
above at 10 for both strata. Additionally, we
assumed that the stratification variable, S, is a
risk factor for disease. In particular, the disease
status for each subject was generated according to
the model

logitfprðDjHd; X; SÞg ¼ b0 þ bX þ bHN2ðHdÞ

þ bHXN2ðHdÞX þ bS

þ bHSN2ðHdÞS

where N2ðHdÞ denotes the number of copies
of h2 ¼ ð0; 1Þ contained in Hd, and where the

parameters ðb0; bX; bH; bHX; bS; bHSÞ were chosen
to be (�3.5, 0.1, 0.15, 0.20, 0:69; 1:10Þ. For each
replicate of our simulation, we first generated
data for a large random sample of subjects, which
was then treated as the underlying study base for
selection of 1,000 cases and 1,000 controls.

During analysis of each data set, as before, we
assumed only that the locus-specific genotype
data were available, but the phase information
was unknown. Each data set was analyzed using
a) the retrospective maximum-likelihood method
under the assumption that Hd and (X, S) are
independently distributed in the population; b)
the retrospective maximum-likelihood method
under the assumption that Hd and X are indepen-
dent, conditional on S (see population stratifica-
tion, above); and c) the modified prospective
estimating equation method (see Alternative
Robust Estimation of b, above). We assumed
prðD ¼ 1Þ to be known for this set of simulations.

The results, shown in Table III, suggest the
following important observations. First, when
the true model assumed that Hd and X were
independent conditional on S, but we analyzed
the data as though Hd and (X, S) were indepen-
dent in the entire population, we induced sub-
stantial bias in estimating the parameters bH, bS,
and bHS. Neither the prospective method nor the

TABLE II. Results from 1,000 simulated case-control studies from a population under HWE, with independent
distributions for haplotypes (H) and environmental covariates (X)a

Pr (D¼1) Parameter Value Bias Observed standard error Estimated standard error Coverage probability

Known bX 0.10 �0.009 0.053 0.054 0.961
bH 0.15 �0.013 0.119 0.122 0.945

0.0 0.006 0.171 0.172 0.951
0.0 �0.007 0.147 0.145 0.948

bHX 0.20 0.009 0.036 0.037 0.939
0.0 �0.001 0.049 0.050 0.953
0.0 0.001 0.041 0.042 0.964

y 0.25 0.001 0.009 0.009 0.954
0.15 o0.001 0.009 0.009 0.954
0.05 o0.001 0.004 0.004 0.938

Unknown bX 0.10 �0.006 0.054 0.056 0.961
bH 0.15 �0.008 0.123 0.129 0.961

0.0 0.006 0.171 0.172 0.951
0.0 �0.007 0.147 0.145 0.949

bHX 0.20 0.0007 0.040 0.043 0.964
0.0 �0.001 0.049 0.049 0.953
0.0 0.001 0.041 0.042 0.963

y 0.25 o0.001 0.010 0.011 0.967
0.15 o0.001 0.009 0.009 0.956
0.05 o0.001 0.004 0.004 0.939

aEach replicate contains 1,000 cases and 1,000 controls, and is analyzed using proposed retrospective maximum-likelihood method,
assuming HWE and H�X independence. Estimates are shown (1) using known probability of disease in population, and (2) estimating
probability from data, using grid-search method.
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method which accounts for population stratifica-
tion suffered from such bias. Secondly, the
prospective method had the largest variance of
the three methods, while the maximum-likelihood
method under the unconditional independence
assumption had the smallest. The retrospective
method which took population stratification into
account provided both small bias and relatively
small variance. These observations suggest that
when gene-environment dependence is suspected,
the use of the retrospective maximum-likelihood
method under the conditional gene-environment
independence model could be optimal, assuming
that factors which may induce such dependence
are observable. If such factors are not observable,
or if direct association between genetic and
environmental factors may exist, then the use of
the modified prospective method should be
considered.

BIAS OF ALTERNATIVE PROSPECTIVE
METHODS

Stram et al. [2003] observed that although a
naive prospective method which ignores the case-
control sampling design may not be strictly
correct, the bias in such a method is typically

small, unless the predictability of haplotypes
given the genotypes, as measured by the R2

h
statistics, is low and the magnitudes of the true
risk-parameters are high. We evaluated the bias of
alternative prospective methods in a situation
where the bias of a naive prospective method was
expected to be high. We implemented three
procedures: a) the naive prospective method
based on cohort likelihood [Lake et al., 2003];
b) the estimating equation approach of Zhao et al.
[2003], assuming rare disease; and c) the proposed
modified prospective-score-equation approach,
assuming PrðD ¼ 1Þ to be known. We considered
a simulation scenario involving three SNPs. To
generate a maximal amount of phase ambiguity,
we assumed all of the 23¼8 haplotypes to be
equally likely. We generated diplotypes for each
subject under the assumption of Hardy-Weinberg
equilibrium. We generated a continuous environ-
mental covariate for each subject, independent of
the subject’s diplotype status, using a log-normal
model as before (see H and X are independent,
above). We assumed that one of the eight
haplotypes was associated with the disease, with
the mode of the effect being dominant. The true
values of parameters for the underlying logistic
regression model were ðb0; bX; bH; bHXÞ ¼
ð�3:5; 0:1; 0:69; 1:60Þ; which corresponded to an
overall disease rate of 10.7%. In each replication,
we generated data for 1,000 cases and 1,000
controls.

We implemented all three methods to estimate
the regression parameters associated with the
known ‘‘risk haplotype.’’ From the results shown
in Table IV, we observe that while the proposed

TABLE III. Results from 1,000 simulated case-control
studies from population where HWE and independence
between haplotypes (H) and environmental covariate (X)
holds within strata defined by Sa

bX bH bHX bS bHS

a) Unconditional RML
Bias 0.009 �0.547 �0.033 �0.102 0.755
Empirical SE 0.059 0.290 0.064 0.305 0.264
Estimated SE 0.062 0.303 0.063 0.318 0.281
Covergage probability 0.956 0.551 0.897 0.941 0.223

b) Conditional RML
Bias �0.004 �0.012 0.010 0.008 0.002
Empirical SE 0.061 0.313 0.065 0.331 0.307
Estimated SE 0.063 0.327 0.067 0.339 0.317
Covergage probability 0.955 0.963 0.954 0.957 0.965

c) Modified PSE
Bias 0.001 �0.022 �0.003 0.010 0.029
Empirical SE 0.070 0.326 0.075 0.337 0.302
Estimated SE 0.069 0.350 0.076 0.349 0.330
Covergage probability 0.942 0.966 0.947 0.960 0.972

aEach replicate contains 1,000 cases and 1,000 controls, and is
analyzed using a) proposed unconditional retrospective max-
imum-likelihood (RML) method assuming that HWE and H�X
independence hold in entire population; b) proposed conditional
RML method, assuming that HWE and H�X independence hold
conditional on S; and c) proposed modified prospective score-
equation (PSE) method.

TABLE IV. Bias and standard errors for regression
parameters estimated using three alternative
prospective methodsa

bX bH bHX

a) Naive prospective
Bias 0.005 �0.198 0.181
Empirical SE 0.040 0.252 0.216

b) Zhao et al. [2003]
Bias �0.022 0.692 �0.705
Empirical SE 0.042 0.216 0.119

c) Modified PSE
Bias �0.002 0.004 0.017
Empirical SE 0.044 0.250 0.200

aNaive prospective method based on cohort likelihood [Lake et al.,
2003], b) estimating equation approach of Zhao et al. [2003],
assuming rare disease; c) proposed modified prospective-score-
equation approach, assuming Pr(D¼1) to be known.
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modified prospective method was unbiased in
estimating all three parameters, both the naive
prospective method and the estimating equation
approach of Zhao et al. [2003] produced substan-
tial bias for estimation of the parameters bH and
bHX. The large bias in the approach of Zhao et al.
[2003] was likely caused by the violation of the
underlying rare-disease assumption. In the cur-
rent simulation setting, although the overall
disease rate for the population is low (10.7%),
the risk of the disease could become very high for
those subjects who carried the risk haplotype and

who also had a high value of environmental
exposure. However, it is important to note that the
example reflects a fairly extreme scenario invol-
ving large amounts of phase ambiguity and strong
genetic effects on the risk of disease. In many
other examples that involved less extreme para-
meter settings, the bias for both the naive
prospective method and the estimating equation
approach of Zhao et al. [2003] was found to be
very small or negligible.

DATA ANALYSIS: ISRAELI
OVARIAN CANCER STUDY

Chatterjee and Carroll [2005] described an
application of their proposed methodology on a

case-control study of ovarian cancer in Israeli
women that was performed to investigate the
interaction between the BRCA1/BRCA2 muta-
tions and oral contraceptive use and parity
[Modan et al., 2001]. Briefly, this study consisted
of all ovarian cancer cases identified in Israel
between March 1, 1994–June 30, 1999. For each
case, two controls were selected. The selected
cases and controls provided blood samples for
testing mutations in the BRCA1 and BRCA2
genes. In addition, data were collected on repro-
ductive/gynecological history such as parity,
number of years of oral contraceptive use, and
gynecological surgery.

Chatterjee and Carroll [2005] restricted their
analysis to 832 cases and 747 controls who were
genotyped for BRCA1/2 mutations, leaving out 50
cases and 763 controls for whom BRCA1/2 status
was missing, but data on all other risk factors
were available. We reanalyzed the data using
the proposed retrospective maximum-likelihood
method, including the subjects with missing
genotype information. Similar to Chatterjee
and Carroll [2005], we considered the following
logistic regression model for risk of ovarian
cancer:

where IðBRCA1=2Þ denotes the 0–1 indicator of
carrying at least one BRCA1/2 mutation, OC
denotes years of oral contraceptive use, Parity
denotes number of children, and Z denotes the set
of all cofactors that Modan et al. [2001] used to
adjust their regression analysis. Moreover, similar
to Chatterjee and Carroll [2005], we assumed the
independence between presence of mutation and
reproductive risk factors conditional on age,
ethnicity, personal history of breast cancer
(PHB), and family history of breast and ovarian
cancer (FHBO). The genotype frequencies were
modeled as a function of these four factors, using
the parametric model

The results of our analysis for the main covariates
of interest, i.e., parity, oral contraceptive use,
BRCA1/2 mutation, and interactions between
the mutations and each of the two reproductive
risk factors, are presented in Table V. Compared to
the analysis of Chatterjee and Carroll [2005] that
included only those individuals with complete
genotype information, we observe that there was
a important reduction in standard errors for the
main effects of the two environmental factors, OC
use and parity. This result is intuitive, given that
the additional subjects who were incorporated in
the new analysis provided data on these two risk
factors. In addition, the new analysis confirmed

logitfprðG ¼ 1jSÞg ¼ y0 þ yAgeIðAge � 50Þ þ yEthIðNon-AshkenaziÞ
þ yPHIðPHB ¼ 1Þ þ y1FHIðFHBO ¼ 1Þ þ y2FHIðFHBO ¼ 2Þ:

logitfprðD ¼ 1Þg ¼b0 þ bBRCA1=2IðBRCA1=2Þ þ bOCOCþ bparityParity

þ bBRCA1=2�OCIðBRCA1=2Þ �OC

þ bBRCA1=2�ParityIðBRCA1=2Þ � Parityþ ZTg
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the original finding of Modan et al. [2001], which
suggested an interaction between BRCA1/2 mu-
tation and OC use. In particular, the results
suggest that, unlike the situation for noncarriers,
the risk of ovarian cancer for carriers did not
decrease with increasing oral contraceptive use.

DISCUSSION

We developed a method for retrospective max-
imum-likelihood analysis of case-control studies
of genetic and environmental factors that can
account for missing genetic information. Particu-
lar emphasis was given to haplotype-based
studies where missing data arise due to phase
ambiguity of available genotype data. By utilizing
a profile likelihood of the data under the
assumption of gene-environment independence
and HWE, we were able to develop a relatively
simple computational algorithm for obtaining the
estimator. We also showed how this profile like-
lihood approach established a connection between
two seemingly different methods for haplotype-
based association analysis of case-control studies:
the ascertainment-corrected joint-likelihood ap-
proach of Stram et al. [2003], and the retrospective
maximum-likelihood approach. Further simplifi-
cations of the methodology under a rare disease
assumption were also described.

Simulation studies in this article as well as those
reported in Epstein and Satten [2003], Satten and
Epstein [2004], and Chatterjee and Carroll [2005]
show that retrospective methods that can exploit
various covariate distributional assumptions, such
as HWE and gene-environment independence,
can lead to major efficiency gains for analysis of
case-control studies. However, caution is needed
in the practical use of these methods, because

these simulation studies also demonstrate the
possibility of major bias in the retrospective
methods when the underlying covariate distribu-
tional assumptions are violated in truth. In this
article, we proposed two alternative methods for
relaxing the covariate distributional assumptions.
In the first we proposed explicitly accounting for
those factors, such as ethnicity, which could be
related to both allele frequencies and environ-
mental factors, possibly inducing an association
between these factors in the population. In the
second, we proposed a variation of the prospec-
tive-estimating equation which we showed to be
asymptotically consistent under the retrospective
case-control design, assuming that underlying
covariate distributional assumptions are valid.
Moreover, in simulation studies, we showed that
the method produced very little bias in parameter
estimates, even when the covariate distributional
assumptions were violated.

A novel finding of our simulation studies, as well
as those reported in Chatterjee and Carroll [2005], is
that when the gene-environment (G-E) indepen-
dence assumption holds, incorporation of external
information on the marginal probability of disease
in the population can lead to further efficiency in
the estimation of regression parameters of interest.
In traditional logistic regression analysis, knowing
the marginal probability of disease allows one to
estimate the intercept term of the regression model,
but otherwise does not have any effect on the
estimation of the other regression parameters of
interest. The marginal probability of the disease,
possibly stratified by basic demographic factors
such as age, sex, and race, is often available or can
be estimated precisely in population based case-
control studies as well as in case-control studies that
are nested within a larger cohort study. The
proposed methodology allows incorporation of
such additional information into the analysis, and
hence can lead to a further precision gain in the
estimation of regression parameters under the G-E
independence model.

When a study involves a large number of
haplotypes, estimation of their frequencies as well
as the associated regression parameters could
become unstable due to the presence of rare
haplotypes. Schaid [2004] gave an excellent review
of various currently available techniques for
tackling this problem. In principle, in our setting,
the parametric model pryðHdÞ can incorporate
genetic models based on evolutionary history,
thus specifying the haplotype frequencies in terms
of a reduced set of genetic parameters. Similarly,

TABLE V. Parameter estimates and estimated standard
errors for parameters of interest for Israeli Ovarian
Cancer Studya

Current analysis Chatterjee and Carroll [2005]

Parameter Estimate S Error Estimate S Error

bmut 3.183 0.337 3.154 0.329
bpar �0.051 0.024 �0.061 0.032
boc �0.068 0.020 �0.051 0.026
bmut,par �0.046 0.060 �0.036 0.053
bmut,oc 0.092 0.030 0.086 0.033

aCurrent analysis includes all individuals available for study,
regardless of whether or not they have BRCA 1/2 status
measured.
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hierarchical modeling techniques can be used to
specify regression parameters b in terms of a set of
lower-dimensional parameters. These and other
extensions of the proposed methodology will be
pursued in the future.
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SOFTWARE

Software implementing the methodology is avail-
able upon request from chattern@mail.nih.gov.
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APPENDIX

PROOF OF LEMMA 2

Recall that zm is the probability mass function for X ¼ xm, m ¼ 1; . . . K. For fixed g ¼ ðb0; b1; yÞ, and
except for constants, the log-likelihood function for z has the form

‘ðzjgÞ ¼
XN

i¼1

logf
XK

m¼1

zmIðXi ¼ xmÞg �
XN

i¼1

log
X

k

X
hj2H

prðD ¼ DijX ¼ xk; H ¼ hjÞqðhj; yÞzk

8<
:

9=
;:

Taking derivatives with respect to each zm and solving, we find that

zm ¼
X

i

IðXi ¼ xmÞ=
XN

i¼1

P
hj2H prðD ¼ DijX ¼ xm; H ¼ hjÞqðhj; yÞP

k

P
hj2H prðD ¼ DijX ¼ xk; H ¼ hjÞqðhj; yÞzk

:

However, note that prðD ¼ dÞ ¼
P

k

P
hj2H prðD ¼ djX ¼ xk; H ¼ hjÞqðhj; yÞzk, and define mðdÞ ¼

Nd=fNprðD ¼ dÞg. This implies that prðD ¼ dÞ ¼ Nd=fNmðdÞg and

zm ¼
P

i IðXi ¼ xmÞ
N
P

d

P
hj2H prðD ¼ djX ¼ xm; H ¼ hjÞmðdÞqðhj; yÞ

:
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It is easily shown that
P

m zm ¼ 1. Substituting, and except for constants, the profile log-likelihood
function has the form

Lfg; zðgÞg ¼
XN

i¼1

½logf
X

h2HGi

prðDijXi; hÞqðh; yÞg þ logfmðDiÞg

� logf
X

d

X
hj2H

prðD ¼ djXi; hjÞmðdÞqðhj; yÞg�:

Now, define k so that logfmð1Þg ¼ logfmð0Þg þ k� b0. Then,

‘fg; zðgÞg ¼
XN

i¼1

log
X

h2HGi

prðDijXi; hÞqðhj; yÞ expfDiðk� b0Þg

2
4

3
5

�
XN

i¼1

log
X

d

X
hj2H

prðD ¼ djXi; hjÞqðhj; yÞ expfdðk� b0Þg

2
4

3
5:

Defining O ¼ ðg; kÞ, and recalling the definition of Sðd; x; h; OÞ, simple algebra completes the proof.

PROOF OF THEOREM 1

Let subscripted O denote partial derivatives, e.g., SOð
Þ and SOOð
Þ are the vector and matrix of the first
and second partial derivatives of Sð
Þ with respect to O, respectively. Obviously, the semiparametric
likelihood score is

LOðOÞ ¼
XN

i¼1

P
h2HGi

SOðDi; Xi; h; OÞP
h2HGi

SðDi; Xi; h; OÞ �
XN

i¼1

P
d

P
hj2H SOðd; Xi; hj; OÞP

d

P
hj2H Sðd; Xi; hj; OÞ

:

That LOðOÞ is an unbiased estimating equation is a simple consequence of the following easily proved
result. Let fXð
Þ be the probability density function of X. Let the distinct values of G be ðg1; . . . ; gMÞ, and let
Hgj

be the values of h consistent with gj. Recall the definition of mð0Þ ¼ N0=fNprðD ¼ 0Þg.

Lemma A.1. For any function RðD; X; GÞ, and any function R�ðD; X; HÞ,

EfN�1
XN

i¼1

RðDi; Xi; GiÞg ¼mð0Þ
Z
x

fXðxÞ
X

d

XM
j¼1

Rðd; x; gjÞ
X

h2Hgj

Sðd; x; h; OÞdx;

EfN�1
XN

i¼1

R�ðDi; Xi; HiÞg ¼mð0Þ
Z
x

fXðxÞ
X

d

X
hj2H

R�ðd; x; hjÞSðd; x; hj; OÞdx:

In addition, assuming that N0=fNprðD ¼ 0Þg ¼ mð0Þ converges to a finite, positive constant, the obvious
law of large numbers applies to the sums in the expectations.

Lemma A.1 can be used to compute the expectations of the matrix of second partial derivatives (the so-
called ‘‘bread of the sandwich’’) and the variance of the score.
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MATRIX OF SECOND PARTIAL DERIVATIVES

Note that

N�1LOOTðOÞ ¼ N�1
XN

i¼1

"P
h2HGi

SOOTðDi; Xi; h; OÞP
h2HGi

SðDi; Xi; h; OÞ �
P

d

P
hj2H SOOTðd; Xi; hj; OÞP

d

P
hj2H Sðd; Xi; hj; OÞ

�
P

h2Gi
SOðDi; Xi; h; OÞf

P
h2Gi

SOðDi; Xi; h;OÞgT

f
P

h2HGi
SðDi; Xi; h; OÞg2

þ
P

d

P
hj2H SOðd; Xi; hj; OÞf

P
d

P
hj2H SOðd; Xi; hj; OÞgT

f
P

d

P
hj2H Sðd; Xi; hj; OÞg2

#

¼ SN1 � SN2 � SN3 þ SN4:

It is easy to show, using Lemma A.1, that

EðSN1Þ ¼ EðSN2Þ ¼ mð0Þ
Z
x

fXðxÞ
X

d

X
hj2H

SOOTðd; x; hj; OÞdx

and that SN1 � SN2 ¼ opð1Þ. A further application of Lemma A.1 shows that the expectations, and hence the
probability limits of SN3 and SN4, are given by

EðSN3Þ ¼Z3 ¼ mð0Þ
Z
x

X
d

XM
j¼1

P
h2Hgj

SOðd; x; h; OÞf
P

h2Hgj
SOðd; x; h; OÞgT

P
h2Hgj

Sðd; x; h; OÞ fXðxÞdx

EðSN4Þ ¼Z4 ¼ mð0Þ
Z
x

P
d

P
hj2H SOðd; x; hj; OÞf

P
d

P
hj2H SOðd; x; hj; OÞTP

d

P
hj2H Sðd; x; hj; OÞ

fXðxÞdx:

Hence, matrix I defined in Theorem 1 is Z3 � Z4.

VARIANCE OF THE SCORE

Recall that

LOðOÞ ¼
XN

i¼1

P
h2HGi

SOðDi; Xi; h; OÞP
h2HGi

SðDi; Xi; h; OÞ �
P

d

P
hj2H SOðd; Xi; hj; OÞP

d

P
hj2H Sðd; Xi; hj; OÞ

( )

¼
XN

i¼1
fA1ðDi; Di; Xi; Gi; OÞ � A2ðXi; OÞg:

Define A3ðd;OÞ ¼ EfA1ðD; D; X; G; OÞ �A2ðX; OÞjD ¼ dg. Then,
PN

i¼1 A3ðDi; OÞ ¼ 0, because the score is
unbiased. Thus we can write

LOðOÞ ¼
XN

i¼1

A1ðDi; Di; Xi; Gi; OÞ � A2ðXi; OÞ � A3ðDi; OÞf g:

Note that each of the terms in this sum is independent with the zero mean. Then,

N�1EfLOðOÞLT
OðOÞg ¼N�1

XN

i¼1

E fA1ðDi; Di; Xi; Gi; OÞ � A2ðXi; OÞgf
gT
h i

�N�1
XN

i¼1

A3ðDi; OÞA3ðDi; OÞT
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where the expression f
g means a repetition of the previous argument. The first term can be written as

D1 �D2 �DT
2 þD3, where by Lemma A.1, D2 ¼ D3 and

D1 ¼ mð0Þ
Z
x

X
d

XM
j¼1

P
h2Hgj

SOðd; x; h;OÞf
P

h2Hgj
SOðd; x; h;OÞgT

P
h2Hgj

Sðd; x; h;OÞ fXðxÞdx

D3 ¼ mð0Þ
Z
x

P
d

P
hj2H SOðd; x; hj;OÞf

P
d

P
hj2H SOðd; x; hj;OÞgTP

d

P
hj2H Sðd; x; hj;OÞ

fXðxÞdx:

Since D1 �D3 ¼ �N�1EfLOOTðOÞ�g, we have shown that

N�1EfLOðOÞLT
OðOÞg ¼ I � L:

Application of the central limit theorem yields Theorem 1.

CONSISTENCY ISSUE FOR PROSPECTIVE ESTIMATING EQUATIONS

We first prove that the modified prospective score equation (19) is unbiased for estimation of k and b1,
assuming that y and b0 are fixed at their true values. We note that the joint distribution of D, Hd, and X in
the underlying population is characterized by the parameters b0, b1, and the distribution function
Vðhd; xÞ ¼ qyðhdÞ�FðxÞ. Using Lemma 1 of Roeder et al. [1996], we observe that for any given value of the
parameters b0 and b1 and any given function Vð�Þ, one can chose b�0 and a distribution function V�ð�Þ such
that

prb0; b1;V
ðHd; XjDÞ ¼ prb�0; b1;V

� ðHd; XjDÞ
and

prb�0; b1;V
� ðD ¼ 1Þ ¼ N1=N:

In particular, by construction, the authors showed that b�0 ¼ k and

V�ðhd; xÞ / rOðhd; xÞVðhd; xÞ:
Let P and Pn denote the probability law for ðD; Hd; XÞ under ðb0; b1; VÞ and ðk; b1; V�Þ, respectively. Let E
and En denote expectations under the probability law P and Pn. Now, the right-hand side of equation (19),
when evaluated at true values of k, b1, y, and b0, can be expressed as

XN1

i¼1

E�
q
qb

logfprk;b1
ðDijHd; XiÞgjDi ¼ 1; Gi; Xi

� �

þ
XN0

i¼1

E�
q
qb

logfprk; b1
ðDijHd; XiÞgjDi ¼ 0; Gi; Xi

� �
:

ðA:1Þ

Let

q�k;b1
ðD;G; XÞ ¼ E�

q
qb

logfprk;b1
ðDjHd; XÞgjD; G; X

� �
:

Thus, under the case-control sampling design, the asymptotic limit of (19) divided by the total sample size
N ¼ N0 þN1 can be written as

N1

N
EG;X q�k; b1

ðD; G; XÞjD ¼ 1
h i

þN0

N
EG;X q�k; b1

ðD; G; XÞjD ¼ 0
h i

: ðA:2Þ
Since P�ðD ¼ 1Þ ¼ N1=N and P�ðG; XjDÞ ¼ PðG; XjDÞ, we can write (A.2) as

E�DE�G;X q�k;b1
ðD; G; XÞjD

h i
¼ E�D;H;X

q
qb

logfprk;b1
ðDjHd; XÞg

� �
ðA:3Þ

which in turn can be shown to be zero by following the standard theory of unbiasedness of the
prospective-score equations under random sampling.
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To see why the proof of consistency fails for the ordinary prospective-estimating equation, we note that
each individual term of equation (18), when evaluated at true values of k, b1 and y can be written asP

hd2Hd
Gi

q
qblogfprk;b1

ðDijhd; XiÞgprk; b1
ðDijhd; XiÞqðhd; yÞP

hd2Hd
Gi

prk; b1
ðDijhd; XiÞqðhd; yÞ :

The above, however, cannot be written in the usual expectation form, because while prk; b1
ðDijhd; XiÞ

corresponds to the probability law of ½DjH; X� under P�, qðhd; yÞ corresponds to the probability law of
½HjX� ¼ ½H� under P. Thus, the ordinary prospective-score equation, when evaluated at k, b1, and y, does
not have a conditional expectation form, which was key to the proof given in Zhao et al. [2003].
Nevertheless, we observe that

prk;b1
ðDjHd; XÞrOðHd; XÞ ¼

exp D kþmðb1; Hd; XÞ
� �� 	

1þ exp b0 þmðb1; Hd; XÞ½ � :

Assuming that the disease is rare in the population for all combinations of Hd and X, one can make the
approximation 1þ exp b0 þmðb1; Hd; XÞ

� �� 	�1 	 1, which, when substituted in equation (19), yields the
approximate estimating function of Zhao et al. [2003].

SANDWICH VARIANCE ESTIMATOR UNDER CASE-CONTROL DESIGN

Let Ô ¼ ðb̂�; ŷÞ be the estimate of O ¼ ðb̂�; ŷÞ that solves the estimating equation
PN

i¼1 COðDi; Gi; XiÞ ¼ 0
for a vector-valued kernel function COðDi; Gi; XiÞ that has the same dimension as O. Using the standard
estimating equation theory, it follows that under suitable regularity conditions,

N1=2 Ô� O0

� �
) Normalf0; S ¼ C�1

OOðA� BÞðC�1
OOÞ

Tg
where

COO ¼ lim
N!1

N�1
XN0þN1

i¼1

qCOðDi; Gi; XiÞ=qO;

A ¼ lim
N!1

N�1
XN0þN1

i¼1

COðDi; Gi; XiÞCT
OðDi; Gi; XiÞ;

B ¼ lim
N!1

X1

d¼0

ðNd=NÞEfCðD; X; G; OÞjD ¼ dg½EfCðD; X; G; OÞjD ¼ dg�T:

A consistent variance estimator can be obtained, based on the above sandwich formula, by estimating
COO, A, and B with their respective empirical versions.
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